
Post-Processing of A- Algorithm for Evaluating Eddy Current Density 

 in Three-Dimensional FEM 
 

Yiqing Geng1, Yingying Wang1, Qiubo Ye2, Yuelong Jia1, Peng Zuo1, Jun Zou1, and Jiansheng Yuan1 
 

1Department of Electrical Engineering, Tsinghua University, Beijing, 100084 China, yuan@tsinghua.edu.cn 
2College of Electric and Information Engineering, Anhui University of Science & Technology, Anhui, 232001 China 

 

After the magnetic vector potential A and the electric scalar potential  are obtained by the FEM, as the post-processing, the 

evaluation of electric field intensity E or eddy current density J is an important step, which influences the accuracy of the simulation 

greatly. Theoretically, E is the sum of the gradient of  and the time-differential of A. However, based on the discrete solution of the 

FEM, how to evaluate the sum of those two terms concerns methodological issue, for the time-differential of A must be nodal values, 

but the gradient of  may be element value. The sum of two terms on different positions may create large error. A method for 

evaluating nodal gradient of  is presented in this paper, to fulfill that the nodal E and J are evaluated by nodal gradient of  and 

nodal time-differential of A. The presented method is a global evaluation method that evaluates the nodal gradient of  based on the 

nodal  in the whole field region by setting and solving another equation system of FEM. Certainly, this post-processing method for 

evaluating E and J consumes some computing time, but the evaluation accuracy can be increased indeed. 

 

Index Terms—Computational electromagnetics, eddy current evaluation, finite element method, gradient evaluation.  

 

I. INTRODUCTION 

HE nodal finite element method with A- potential 

functions has been widely used to solve 3-d eddy current 

problems. Generally, high accurate solution of the potentials 

can be made. However, the accuracy of electric field intensity 

or eddy current density evaluated from the known potentials 

may be much lower.  

Theoretically, the electric field intensity E is the sum of the 

gradient of electric scalar potential and the time-differential 

of magnetic vector potential A. In the FEM solution, if the 

field E at a node is to be evaluated, the gradient of  and the 

time-differential of A exactly at that node should be known. 

However, there is no a unique theoretical method to obtain the 

nodal gradient of  from the nodal . Existing different 

methods provide different evaluation accuracy and take 

different computing time [1-2], which evaluate the nodal 

gradient of  based on the known  at nodes around the target 

node, so that they are local region methods. 

A method for evaluating nodal gradient of  is presented in 

this paper. It is a global evaluation method that evaluates the 

nodal gradient of  based on the nodal  in the whole field 

region by setting and solving an equation system of FEM. 

Therefore, the method is of theoretical completeness. 

Although it needs extra computing time to solve another 

equation system of FEM besides the FEM for solving potential 

A-, the method can provide high accurate result for E and J, 

which is proved in the solution of transient problems.  

II. GLOBAL EVALUATION METHOD OF GRADIENT 

Based on nodal potential values obtained by the FEM, the 

eddy current density at any node in conductor could be 

expressed as: 
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where is electric potential, A is the magnetic vector 

potential, and  is the conductivity. It is easy to get the nodal 

time-differential of A, i.e. the second term of (1), whose 

accuracy depends on the length of time step and the mesh.  

But the evaluation of nodal gradient of  mainly depends on 

methods. A new method is introduced in the following. 

A. Gradient Equation 

In order to evaluate the nodal gradient of  based on known 

nodal , we set an equation first as follows:   

( ) ( ) E r r                                 (2) 

where, E(r) is regarded as unknown function to be solved, and 

the right hand side is known. However, we must avoid the 

evaluation of ∇𝜑, since the solution of gradient will increase 

or enlarge the error of . The FEM will be used to solve (2), 

which employs the Schaubert-Wilton-Glisson (SWG) basis 

function [3]. In forming the system of FEM equations, the 

evaluation of  ∇𝜑 will be avoided. 

B. Derivation of the FEM Equation System 

The weighted residual method is adopted to form the system 

of FEM equations for (2).  By employing the SWG basis 

function, E(r) in (2) can be expressed as follows: 
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where, N is the number of element faces, En represents the 

normal components of E(r) at the nth face, and fn(r) is the 

SWG basis function [3]. 

By adopting the SWG basis function as the weighting 

function, taking the inner product of f(r) with (2) yields 
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To remove  ∇𝜑 in (4), by the divergence theorem and vector 

T 



calculus [4], (5) could be written as: 
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With (3) and (5), the finite element equations could be 

obtained as follows: 
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where Ne is total number of elements, N is total number of 

element surfaces, and m from 1 to N expresses the mth 

equation of equation system. Equation (6) can be written as 

ZE b                                  (7) 

According to the expression of the SWG basis function, the 

element of Z is as follows: 
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In the right hand side of (6), there is the divergence of f(r), 

whose analytical solution can be obtained as follows: 
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Then, the right hand side of (6) can be written as 
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By solving the finite element equations, the gradient of the 

potential at nodes can be evaluated. Consequently, the total 

current density at nodes, which is the combination of the 

electric potential gradient part and the time variation of 

magnetic vector potential part, can be obtained in high 

accuracy. 

III. VERIFICATION OF THE METHOD 

In order to verify the accuracy of the global evaluation 

method, a model with analytical solution is employed, which 

is a cylinder conductor excited by a harmonic current. The 

purpose is to compare the numerical solution of the current 

distribution on the section of the conductor with the analytical 

solution. Suppose its radius is 0.05m, length is 0.5m, 

conductivity is 4.41×107 S/m, and the frequency of current 

source is 50 Hz. 

 

 

Due to the skin effect of eddy current distribution, the 

current density varies dramatically near conductor surface. 

Therefore, refining finite element mesh is set near the 

conductor surface as shown as Fig. 1, which can guarantee 

both the solution of A-and the gradient of as well as the 

eddy current. The tetrahedral mesh is employed. 

The current density distributions along cylinder radius of 

the section obtained by analytical solution, traditional method 

and the global method are given in Fig 2. The traditional 

method means that the gradient of is evaluated in each 

element by the nodal at its four nodes. From the results in 

Fig 2, we can see that the global method can significantly 

improve the accuracy of the electric field intensity and the 

eddy current, compared with the traditional method.  
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Fig. 1.  Mesh on section.     Fig. 2.  Current density distributions along radius. 

IV. CONCLUSIONS 

1) The new approach takes account of global electric 

potential values to evaluate the gradient of the potential by 

solving a system of FEM equations, so that the nodal gradient 

can be obtained directly.  

2) In forming the FEM stiffness matrix, the computation of 

electric potential gradient by discrete nodal values can be 

avoided, which can remove the error of gradient operation, so 

that the accuracy of global method is improved further.  

3) Although the global method is more time consuming, 

because of solving finite element equations, it can provide 

high accuracy solution of eddy current and electric field.  

4) The new method can not only be used in eddy current 

evaluation, but also in other gradient evaluation based on 

known nodal potential values. 
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